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Glucose analogue inhibitors of glycogen phosphorylase, GP, may be of clinical interest in the
regulation of glycogen metabolism in diabetes. The receptor geometry of glycogen phosphorylase
b, GPb, is available for structure-based design and also for the evaluation of the thermodynamics
of ligand-receptor binding. Free energy force field (FEFF) 3D-QSAR analysis was used to
construct ligand-receptor binding models. FEFF terms involved in binding are represented
by a modified first-generation AMBER force field combined with a hydration shell solvation
model. The FEFF terms are then treated as independent variables in the development of 3D-
QSAR models by correlating these energy terms with experimental binding energies for a
training set of inhibitors. The genetic function approximation, employing both multiple linear
regression and partial least squares regression data fitting, was used to develop the FEFF
3D-QSAR models for the binding process and to scale the free energy force field for this
particular ligand-receptor system. The significant FEFF energy terms in the resulting 3D-
QSAR models include the intramolecular vacuum energy of the unbound ligand, the
intermolecular ligand-receptor van der Waals interaction energy, and the van der Waals energy
of the bound ligand. Other terms, such as the change in the stretching energy of the receptor
on binding, change in the solvation energy of the system on binding, and the change in the
solvation energy of the ligand on binding are also found in the set of significant FEFF 3D-
QSAR models. Overall, the binding of this class of ligands to GPb is largely characterized by
how well the ligand can sterically fit into the active site of the enzyme. The FEFF 3D-QSAR
models can be used to estimate the binding free energy of any new analogue in substituted
glucose series prior to synthesis and testing.

Introduction

Structure-based design currently involves the use of
the structure of the receptor and/or, if available, the
structure of a ligand-receptor complex to perform
molecular modeling studies to elucidate the features of
ligand-receptor binding. The three-dimensional struc-
ture of receptors and, increasingly, of ligand-receptor
complexes are available through advances in molecular
biology, protein expression and purification, X-ray crys-
tallography, and nuclear magnetic resonance (NMR)
spectroscopy. Unfortunately, the accurate and reliable
prediction of the thermodynamics of ligand-receptor
binding has remained problematic. That is, the compu-
tational equivalent of the in vitro binding assay has
remained an elusive goal.

The correlation between binding affinities and a set
of two-(2D) and three-dimensional (3D) descriptors for
a series of ligands has been used to develop quantitative
structure-activity relationships (QSARs).1 For those
cases in which the receptor geometry is known, the
physicochemical properties derived from ligand-recep-
tor interactions can potentially be used in building

receptor-dependent (RD) 3D-QSARs. Hopfinger and co-
workers in 1981 reported the correlation of biological
activities with log P, the water-octanol partition coef-
ficient of the ligand, and the calculated intermolecular
binding affinities for anticancer anthracyclines inter-
calating between adjacent DNA base pairs as a 3D-
QSAR.2 Holloway et al. have constructed a regression
equation which relates calculated interaction energies
for HIV-1 protease inhibitor complexes and the corre-
sponding observed in vitro enzyme inhibition.3 Ortiz et
al. reported a method termed comparative binding
energy (COMBINE) analysis for constructing RD 3D-
QSARs in which the receptor geometry is used in
computing the candidate QSAR descriptors.4 A recent
paper by Tokarski and Hopfinger reported a RD 3D-
QSAR methodology termed free energy force field
(FEFF) 3D-QSAR analysis as applied to a set of peptido-
mimetic renin inhibitors.5 Succinctly, the principal
features of FEFF 3D-QSAR analysis are (1) all of the
enthalpy and entropy contributions to the ligand-
receptor interaction in a solvent medium are taken into
consideration, (2) the set of enthalpy and entropy
contributions to binding are treated as the independent
variables in developing a 3D-QSAR model for ligand-
receptor binding, and (3) the optimal FEFF 3D-QSAR
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model is constructed using a genetic algorithm. FEFF
3D-QSAR analysis is the intermolecular extension of
molecular shape analysis (MSA)6 and can be viewed as
a simulation of an in vitro binding assay.

Ligand-receptor molecular dynamics simulations
(MDSs) are used in the FEFF method to assemble the
ligand-receptor binding states. The smaller the chemi-
cal system (less atoms), the more computationally
economical is the corresponding MDS. One of the goals
of the work reported in this paper is to devise a
procedure to reduce the size of the receptor model to
facilitate shorter MDSs while retaining reliable results.

This paper reports the FEFF 3D-QSAR analysis of a
set of glucose analogue inhibitors of glycogen phospho-
rylase b (GPb). Glycogen is the carbohydrate reserve of
most metabolically active cells in mammals. GP cata-
lyzes the first step in the phosphorolysis of glycogen to
glucose-1-phosphate. In muscle, glycolysis of glucose-1-
phosphate provides energy to sustain muscle contrac-
tion. The liver converts glucose to provide fuel for other
tissues. GP exists in two interconvertible states through
reversible phosphorylation, the inactive b form (pre-
dominantly T state) and the active a form (predomi-
nantly R state). Hepatic glycogen metabolism is regu-
lated by glucose through promotion of inactivation of
GPa.7 Glucose inactivates GPa by competitive inhibition
of glucose-1-phosphate and stabilizes the inactive T
state.

Methods

1. The FEFF 3D-QSAR Formalism. The ligand-
receptor interaction can be expressed as

where L is the ligand, R is the receptor, M is the solvent
medium, and K is the inhibition constant expressed
relative to LR dissociation. The difference in free energy
between the bound and unbound states of a ligand, L,
to a receptor, R, in a solvent medium, M, can be stated
as

where ∆G° is the standard binding free energy, G°LR is
the free energy of the bound or complex state, G°L is
the free energy of the unbound ligand, G°R is the free
energy of the unbound receptor, R is the gas constant,
and T is the temperature of the system. The free energy
of an enzyme-ligand complex can be approximately

broken down into a set of component interactions as
follows

where GLR(XY) refers to the interaction between X and
Y.

The interaction terms can be divided into their
respective enthalpy, H°LR, and entropy, S°LR, contribu-
tions.

At low solute concentration the enthalpy terms, HLR-
(XY), can be represented by their respective internal
energies, ELR(XY),

and the entropy term, SLR(XY), contributions as

The unbound ligand, G°L, and receptor, G°R, free ener-
gies have the following components

The enthalpy contributions of L and R at low concentra-
tion, HL(XY) and HR(XY), can also be represented by
their internal energies, EL(XY) and ER(XY), as in eq 5.
The complete set of contributions to the internal and
entropy energies and their representations is given in
Table 1.

The terms in Table 1 can be the independent variables
used in the FEFF 3D-QSAR analysis. However, the free
energy of binding, ∆G, can also be represented by the
individual free energy force field terms for L, R, and
LR in Table 1 along with their respective weighting
(regression) coefficients, Ri. This representation for ∆G,
eq 9, can be used to provide additional descriptors for
FEFF 3D-QSAR analysis

where ∆Estretch is the unbound to bound change in

Table 1. Breakdown of the FEFF Interaction Terms, XY, for a Ligand (L) and a Receptor (R) in a Medium (M)

binding
component(s) type of interaction energy, XY

change in internal energy,
symbols change in entropy, symbols

ligand L intramolecular ligand conformational
energy LL

∆EL(LL) ) ELR(LL) - EL(LL) ∆SL(LL) ) SLR(LL) - SL(LL)

ligand L ligand solvation energy LM ∆EL(LM) ) ELR(LM) - EL(LM) ∆SL(LM) ) SLR(LM) - SL(LM)
solvent medium M solvent reorganizational energy MM ∆EM(MM) ) ELR(MM) -

[EL(MM) + ER(MM)]
∆SM(MM) ) SLR(MM) -

[SL(MM) + SR(MM)]
receptor R intramolecular receptor conformational

energy RR
∆ER(RR) ) ELR(RR) - ER(RR) ∆SR(RR) ) SLR(RR) - SR(RR)

receptor R receptor solvation energy RM ∆ER(RM) ) ELR(RM) - ER(RM) ∆SR(RM) ) SLR(RM) - SR(RM)
ligand-receptor RL intermolecular ligand-receptor energy LR ∆ELR(LR) ) ELR(LR) ∆SLR(LR) ) SLR(LR)

L‚M + R‚M
(unbound state)

798
K

(LR)‚M
(bound state)

(1)

∆G° ) G°LR - (G°L + G°R) ) - RT ln K (2)

G°LR ) [GLR(LL) + GLR(RR) + GLR(MM) +
GLR(LR) + GLR(LM) + GLR(RM)] (3)

G°LR ) H°LR - TS°LR (4)

H°LR ) E°LR ) [ELR(LL) + ELR(RR) + ELR(MM) +
ELR(LR) + ELR(LM) + ELR(RM)] (5)

SLR ) [SLR(LL) + SLR(RR) + SLR(MM) + SLR(LR) +
SLR(LM) + SLR(RM)] (6)

G°L ) [GL(LL) + GL(LM) + GL(MM)] (7)

G°R ) [GR(RR) + GR(RM) + GR(MM)] (8)

∆G ) R1∆Estretch + R2∆Ebend + R3∆Etorsion +
R4∆EvdW + R5∆Eelectrostatic + R6∆Ehydrogen-bonding +

R7∆Esolvation + R8T∆S (9)

2170 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 12 Venkatarangan and Hopfinger



internal energy for bond stretching, ∆Ebend is the change
in bond angle bending energy, ∆Etorsion is the change in
torsional energy, ∆EvdW is the change in van der Waals
interaction energy, ∆Eelectrostatic is the change in elec-
trostatics interaction energy, ∆Ehydrogen-bonding is the
change in hydrogen-bonding energy, ∆Esolvation is the
change in solvation energy, and ∆S is the change in the
entropy of the L, R, M system which can be partitioned
into component contributions. The hydration shell model
proposed by Hopfinger8 was included in the potential
energy function to calculate the solvation energies.

Koehler and Hopfinger have applied a group additive
property (GAP) method to calculate the conformational
entropies of linear chain polymers.9 The assumption of
the GAP concept is that some intrinsic contribution to
any composite property, P(i), is associated with the ith
structural group of the molecule. The composite prop-
erty, P, is simply taken to be the sum of the P(i)
composing the molecule. The GAP method of Hopfinger
and Koehler is called torsion angle unit, TAU, theory.
A TAU is defined by adjacent structural units connected
by a bond about which some torsion angle θ occurs.

The application of the TAU theory to ligand-receptor
systems was reported by Tokarski and Hopfinger.5 This
method assumes torsional conformational entropy makes
the largest entropic contribution to the ligand-receptor
system and estimates the component values. The TAU
values9 are selected for the torsion angle types found
in the receptor and inhibitors, and the sum of the
appropriate TAU entropy values allows an estimation
of the corresponding ligand and receptor conformational
entropies.

In this study, the glucose analogue inhibitors have
quite limited conformational flexibility. Still, the TAU
method was applied to a subset of the ligands in the
training set and ligand conformational entropy esti-
mated. Variation in conformational entropy was found,
as expected, to be small, and the TAU entropies did not
appear in the optimized FEFF 3D-QSAR models for this
subset. It was, therefore, assumed that the ligand
contribution from a change in torsional conformational
entropy upon binding to the receptor is small and nearly
constant across the analogue series. Further, the change
in the torsional conformational entropy of the receptor
upon ligand binding was assumed to be constant across
the analogue series. No attempt was made to estimate
entropy from the ensemble of states sampled in the
MDS by constructing the corresponding partition func-
tion.

The internal energy change upon ligand-receptor
binding is given by

where X represents each of the internal energy contri-
butions as defined in eq 9. The potential function
parameters used to calculate the nonbonded, electro-
static, torsional, bond stretching, and bond angle bend-
ing energy terms of eq 9 were taken from the AMBER
force field.10 Missing force field parameters (torsional,
bond stretching, and bond angle bending) were scaled
from a set proposed by Hopfinger11 and the MM2 force
field.12 The set of atoms most similar to those of the
missing AMBER parameter is identified for a parameter
which has both AMBER and MM2 (or Hopfinger) values.

The ratio of the known parameter from the AMBER and
MM2 force fields is determined. The unknown AMBER
parameter value is then scaled by the same ratio against
the known MM2 value. This linear scaling approxima-
tion in force field parametrization is further compen-
sated by the subsequent force field fitting process which
is central to the FEFF methodology and has been
described above.

2. Inhibitory Binding ConstantssDependent
Variables. A training set of glucose analogue inhibitors
of GPb were reported along with their inhibitory binding
constants (Ki).13-16 The kinetic binding studies were
performed as described by Martin and co-workers.13 The
structure-activity data for the training set of glucose
analogue inhibitors of GPb are given in Table 2. The Ki

values are expressed as millimolar (mM) units. The ∆G
values are calculated from the Ki values using eq 2.

3. Receptor Geometry. Martin and co-workers
cocrystallized glucose bound to GPb at 2.4 Å resolu-
tion.13 The coordinates of this complex were obtained
from the Brookhaven Protein Data Bank18 under the
PDB entry 2GPb. The starting protein structure used
in the FEFF 3D-QSAR analysis was the refined struc-
ture of the glucose complex.13 Hydrogens were added
to the PDB structure through an option in the QUANTA
modeling package.19 Water molecules located in the
crystal structure of glucose-GPb complex were not
included in the FEFF protein model. Steric contact
violations were identified by 3000 steps of MDS using
the MOLSIM package.20 The bad steric interactions
were relieved by perturbation conformational scans over
the side chains of the residues causing them. AMBER
partial atomic charges10 were assigned to all atoms of

∆EX ) ELR,X - (EL,X + ER,X) (10)

Table 2. Structure-Activity Data for the Glucose Analogue
Inhibitors of Glycogen Phosphorylase b Used in the FEFF
3D-QSAR Training Set

compd R â
Ki

(mM)
∆G303

(kcal/mol)

1 H NHC(dO)CH3 0.032 6.23
2 H NHC(dO)CH2CH3 0.039 6.11
3 H NHC(dO)CH2Br 0.044 6.04
4 H NHC(dO)CH2Cl 0.045 6.03
5 H NHC(dO)C6H5 0.081 5.67
6 H NHC(dO)CH2CH2CH3 0.094 5.58
7 H NHC(dO)NH2 0.14 5.34
8 H C(dO)NHCH3 0.16 5.26
9 H NHC(dO)CH2NH2 0.37 4.76

10 C(dO)NH2 H 0.37 4.76
11 H C(dO)NH2 0.44 4.65
12 H C(dO)NHNH2 0.40 4.17
13 H SH 1.00 4.16
14 CH2OH H 1.50 3.92
15 OH H 1.70 3.84
16 H C(dO)NHC6H5 5.40 3.14
17 H OH 7.40 2.95
18 H CH2CN 9.00 2.84
19 OH CH2OH 15.80 2.50
20 H OCH3 24.70 2.23
21 CH2NH2 H 34.50 2.03
22 C(dO)NHCH3 H 36.70 1.99
23 CH3 H 53.10 1.77
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the enzyme structure. The potentially ionizable residues
of the enzyme were modeled as neutral.

4. Building and Docking the Ligands. The geom-
etry of bound glucose was used as the starting structure
for building the ligand analogues of Table 2. The
Chemlab-II molecular modeling program21 was used to
add substituents to the glucose ring. Substituent ge-
ometries were optimized by fixed valence geometry
conformational analysis. CNDO/2 charges were assigned
to the ligands. The conformation and alignment of the
reference crystal glucose ring structure was used to dock
the glucose analogues. Bad steric contacts between a
few of the ligand analogues and side chains of enzyme
residues were relieved during initial docking.

5. Enzyme Model Size Determination. The com-
plete enzyme model contains 13470 atoms which in-
cludes protons. This large enzyme size would require
unrealistically extensive MDSs to yield meaningful
results. Thus, the GPb enzyme system was scaled down
to economize the MDSs. The largest inhibitor (com-
pound 16 of Table 2) was docked at the active site to
determine the minimum size of an effective enzyme
model needed to do reliable FEFF 3D-QSAR analysis.
The derivation of the enzyme binding model was done
using the “pruning” method of Tokarski and Hopfinger.5
Spherical enzyme models of 12, 10, and 8 Å radii,
centered around the docked ligand, see Figure 1, were
examined in order to prune the enzyme without losing
binding information. The pruned enzyme models es-
sentially consist of amino acid residues clustered around
the active site. Localized conformational changes of the
residues at the active site were seen for the binding of
some analogues.13-16 The pruned models are designed
to allow for these conformational changes at and near
the active site.

The residues that had at least one non-hydrogen atom
within the pruning sphere were included in the corre-

sponding enzyme model. The pruning process usually
leads to an enzyme model consisting of a number of
nonbonded (unconnected) peptide residue clusters. Pep-
tide residue clusters separated by less than five inter-
vening amino acid residues were “connected” by includ-
ing the intervening amino acid residues. This approach
is intended to retain local geometric integrity of the
enzyme model in the pruning process.

The enzyme model size was evaluated for both con-
formational and binding integrity by performing MDSs
on the scaled down trial models. A MDS of 2 ps at 300
K was performed on each of the model enzymes of
different pair-interaction size using a nonbonded cutoff
of 16 Å. The molecular dielectric was 3.5. The modified
AMBER force field was used in the MDSs. Comparisons
of the total intermolecular van der Waals and electro-
static energies, respectively, for each of the three
different size enzyme models were made.

A root-mean-square (RMS) fit of the lowest energy
structure of each of the three model enzymes to the
starting crystal structure was made. The RMS fit of the
whole enzyme structure from the MDS with respect to
the crystal structure was also made. The ligand-
receptor interaction energies were calculated for each
of the enzyme models.

Some atoms of each enzyme model had to be con-
strained to prevent major deviations from the starting
crystal structure. The enzyme models contain uncon-
nected peptides, but assigning fictitious high masses to
all of the atoms in an enzyme model provides “momen-
tum reservoirs” which can impart equivalent structural
and dynamic effects as the “absent” amino acid residues
of the complete enzyme. Different enzyme models were
explored by assigning a fictitious mass of 1000, 2500,
and 5000, respectively, to each atom of an enzyme model
and then evaluating the RMS fit to the initial X-ray
crystal structure as described by Tokarski and Hopfin-
ger.5 Inhibitors 1, 16, and 23 of Table 2 were used in
this enzyme pruning and evaluation study. A MDS of
10 ps, with a step size of 0.5 fs, was performed for each
of the trial enzyme mass models with a bound ligand
at 300 K. The maintenance of the structural integrity
of the complex, as measured by the RMS fit, was used
to evaluate and select the preferred fictitious mass
value. It should be pointed out that the conformational
entropy terms are estimated using the TAU method
which is independent of the masses assigned in this
enzyme pruning scheme.

6. Sampling Temperature Determination. The
temperature of an MDS can be only approximate to the
corresponding real temperature of the chemical system.
The specific representation of the force field used in a
MDS can also influence the relationship between actual
and simulation temperatures. Thus, temperature was
considered as a scaling variable in this FEFF 3D-QSAR
analysis.

The temperature sampling schedule scheme devel-
oped by Tokarski and Hopfinger5 for the bound and
unbound states of the ligand enzyme system, using a
subset of the analogue training set, see Table 3, was
carried out at 400, 350, 300, 200, 100, 50, 25, 10, and 5
K. “Mini” FEFF 3D-QSAR models derived from the
ligand subset were used to determine the preferred
simulation temperature. That is, the preferred MDS

Figure 1. Schematic representation of the geometry used to
determine the size of the model enzyme. The amino acid
residues centered around the ligand (thick line) are included
in the 8 Å model size (inner concentric circle). The outer circle
represents the 10 Å model.

2172 Journal of Medicinal Chemistry, 1999, Vol. 42, No. 12 Venkatarangan and Hopfinger



temperature corresponds to the best fit of FEFF ther-
modynamic parameters to the experimental binding free
energies. The correlation coefficient, r2, and leave-one-
out cross validation coefficient, xv-r2, of the best FEFF
3D-QSAR for each simulation temperature are given in
Table 4.

7. Computational Details. The binding simulation
sampling scheme was initiated by an MDS of 20 ps,
using a time step of 0.5 fs, on the ligand-enzyme
complex model. The structures of the models and their
corresponding FEFF energy terms were recorded every
0.2 ps of the simulation. Modeling of the unbound state
consisted of isolating both the bound ligand and the
corresponding receptor from the lowest energy geometry
of their complex realized from the bound state MDS
modeling. A MDS of the unbound ligand was then
performed at 300 K for 100 ps using a time step of 1 fs.
A corresponding MDS of the unbound receptor was
performed for a sampling time of 20 ps, with a step size
of 0.5 fs, at 300 K. The hydration shell model8 was used
to calculate the solvation energy of the lowest energy
conformation obtained from the MDS of the complex,
the unbound ligand, and the unbound receptor. The
lowest energy geometry of the complex, ELR, unbound
ligand, EL, and unbound receptor, ER, were used,
respectively, to obtain the corresponding free energy
force field terms as described in Table 1 and eq 9. The
ensemble averaged free energy force field terms were
also calculated using the trajectories of MDSs as the
ensembles.

8. Construction of the FEFF 3D-QSAR Models.
The nonscaled FEFF energy terms were used as de-
scriptors (independent variables), and the genetic func-

tion approximation (GFA) optimization method,22 em-
ploying multiple linear regression, MLR, was used to
construct trial QSAR models. The robustness of each
model was tested by evaluating statistical measures of
fit which included r2, xv-r2, the F-statistic, F, and the
lack-of-fit, LOF.22,23 The number of possible FEFF
descriptors is large compared to the number of ana-
logues in the training set. The LOF measure in the GFA
prevents overfitting of data by assigning a penalty for
the addition of independent variables to a model.

To determine if the top five 3D-QSAR models provide
common, or distinct, structure-activity information, the
correlation coefficients of the residuals in the error
(observed activity - predicted activity) between pairs
of models were computed. Equivalent models are ex-
pected to have identical distributions in the residuals
of error. Distinct models should have noncorrelated
patterns in their residuals of fit (error). This type of
analysis has been suggested by Rogers24,25 as a diag-
nostic to determine the subset of distinct models among
a set of good models realized in a GFA analysis.

Results

The size of the enzyme model was selected based on
a combination of geometric stability and the variance
of the ligand-enzyme interaction energy for the 12, 10,
and 8 Å model radii. The ligand-model enzyme interac-
tion energies showed no significant differences among
the three model sizes evaluated for an atom-pair non-
bonded cutoff of 16 Å. The atom RMS fit of each lowest
energy geometry from the corresponding MDS for the
12, 10, and 8 Å radii models to the enzyme crystal
structure was 1.06, 1.04, and 1.29 Å, respectively. The
total ligand-enzyme interaction energies for the 12, 10,
and 8 Å models are 44.57, 45.01, and 44.26 kcal/mol,
respectively. The RMS fit of the whole enzyme structure
from the MDS with respect to the crystal structure was
1.30 Å. The enzyme model size of 10 Å was selected for
all FEFF final MDSs as a compromise between struc-
tural integrity and computational efficiency.

A fictitious mass assignment to all non-hydrogen
atoms of the enzyme model was found to be a minimum
necessary condition to maintain the geometric integrity
of the enzyme model. Moreover, a fictitious mass of 2500
assigned to each of the atoms in the 10 Å enzyme model
provided optimal geometric model stability (Figure 2).
In addition, studies on the role of MDS schedule
indicated that longer simulations did not necessarily
lead to lower energy structures. However, MDSs of more
than 20 ps often caused the enzyme model to diverge
substantially from the crystal geometry. It was found
that a simulation temperature of 300 K provided a trial
set of FEFF terms which when used as descriptors
yielded the best FEFF 3D-QSAR model. It should be
noted that the bioassays for measuring binding were
performed at 303 K.

Overall, a sampling temperature of 300 K on the 10
Å enzyme model, with a fictitious mass of 2500 assigned
to all enzyme model atoms, and a MDS of 20 ps provided
the best compromise between computational time and
the realization of low-energy states of geometries close
to the crystal structure. The low-energy structures,
obtained from the MDSs, of all the ligand-enzyme
systems of the training set were found to have RMS fits

Table 3. Subset of the Glucose Analogue Inhibitor Training
Set Used in the Determination of the Optimum MDS Sampling
Temperature

compd R â Ki (mM)
∆G303

(kcal/mol)

1 H NHC(dO)CH3 0.032 6.23
4 H NHC(dO)CH2Cl 0.045 6.03
5 H NHC(dO)C6H5 0.081 5.67
8 H C(dO)NHCH3 0.16 5.26

15 OH H 1.70 3.84
16 H C(dO)NHC6H5 5.40 3.14
21 CH2NH2 H 34.50 2.03
22 C(dO)NHCH3 H 36.70 1.99
23 CH3 H 53.10 1.77

Table 4. r2 and xv - r2 Values of the Best FEFF 3D-QSARs
Realized from the MDSs at Different Simulation Temperatures

temp (K) r2 xv - r2

400 0.56 0.38
350 0.62 0.49
300 0.85 0.79
200 0.70 0.56
100 0.45 0.30
50 0.54 0.33
25 0.55 0.45
10 0.33 0.23
5 0.50 0.29
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to the crystal structure of less than 1.5 Å (Figures 3
and 4).

The trial FEFF 3D-QSAR models were constructed
using the GFA-MLR option of the WOLF program26 for
a sample size of 23 analogues. The models derived from
GFA-MLR analysis are listed in Table 5 along with their
statistical measures of fit and robustness as discussed
earlier. A smoothing factor of 0.5 was found to optimize
model size (number of independent variables) and
predictiveness.

The top five FEFF 3D-QSAR models based on the
applied statistical measures of fit are reported in Table
5. The FEFF terms found as significant descriptors in
the GFA-MLR analysis are defined in Table 6. All
ligands in the training set (no outliers) are used in
constructing the models in Table 5. The van der Waals
intermolecular ligand-receptor binding energy, ELR,vdW,
the intramolecular energy of the unbound ligand, EL-
(LL), and the van der Waals energy of bound ligand,
ELR,vdW(LL), are found in all five top models and are not
correlated to other significant FEFF terms found among
the top five FEFF 3D-QSAR models. The stretching
energy of the bound ligand, ELR,stretch(LL), the electro-
static energy of the bound ligand, ELR,electrostatic(LL), and
the hydrogen-bonding energy of the unbound ligand,
EL,hb(LL), are present interchangeably in the five top
models. The variables ELR,el, ∆Ehb, ∆Eelectrostatic, see Table
6, although not found in the FEFF 3D-QSAR models,

Figure 2. Overlap of the protein backbone of the initial
crystal structure (dark lines) with the low-energy model
enzyme structure after molecular dynamics simulation at 300
K using a heavy mass assignment of 2500 to each atom of the
10 Å model.

Figure 3. A stereoview of the overlap of the active site amino acid residues of the enzyme crystal structure with the low-energy
representative structure of the model enzyme after molecular dynamics simulation at 300 K with a heavy mass of 2500 assigned
to each atom of the 10 Å model with the R-methyl analogue (compound 23) bound.

Figure 4. A stereoview of the overlap of the active site amino acid residues of the enzyme crystal structure with the low-energy
representative structure of the model enzyme after molecular dynamics simulation at 300 K with a heavy mass of 2500 assigned
to each atom of the 10 Å model with the â-methylacetyl analogue (compound 1) bound.
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are highly correlated with some of the significant FEFF
terms in the top models, see Table 7. The descriptors
within any given model are not significantly correlated
to one another.

Partial least squares (PLS) regression yielded a three-
component FEFF model as being most significant. All
the top MLR models given in Table 5 contain the three
descriptors identified by PLS, i.e., the van der Waals
intermolecular ligand-receptor binding energy, ELR,vdW,
the intramolecular energy of the unbound ligand, EL-
(LL), and the van der Waals energy of bound ligand,
ELR,vdW(LL). Thus, the FEFF terms used in the top
models are likely the major thermodynamic properties
governing the relative binding thermodynamics. The
relative contributions of the individual FEFF descriptors
during the GFA model optimization are shown by the
crossover versus descriptor usage plot in Figure 5. Once
again the LOF measure prevents overfitting of the data
and is particularly appropriate in the FEFF 3D-QSAR
approach since many of the energy terms are derived
from the same source and the number of energy terms
(the trial set of independent variables) is large compared
to the number of observations (analogues in the training
set). A statistically poor 3D-QSAR model (r2 ) 0.3, xv
- r2 ) 0.12) was obtained when the biological activity
column was randomized, suggesting that the FEFF 3D-

QSAR models in Table 5 were not due to random
correlations.

To determine if the top five 3D-QSAR models are
providing common, or distinct, structure-activity in-
formation, the correlation coefficients of the residuals
in error (observed activity - predicted activity) between
pairs of models were computed and are reported in
Table 8. All of the top five models are highly correlated
to one another, indicating there is only one unique FEFF
3D-QSAR model which is selected as the model with the
highest xv - r2 value, namely model 1 in Table 5.

Outliers were defined as those analogues whose
difference in observed and predicted ∆G values are
greater than 2 standard deviations from the mean. The
resulting two outliers for the training set are compounds
18 and 19 (Table 2) as can be seen in Figure 6. The
removal of these two outliers and GFA-MLR refitting
on the remaining data set of 21 compounds yielded the
FEFF 3D-QSAR models shown in Table 9. In addition
to the dispersion terms found in the original best model
of Table 5, the total LR(M) change in the solvation
energy upon binding, ∆Esolv, the change in the solvation
energy of the ligand on binding, ∆EL(LM), and the
unbound ligand solvation energy, EL(LM), are now
found as significant descriptors in the best “outlier-free”
four-descriptor FEFF 3D-QSAR models. The stretching,
electrostatic, and hydrogen-bonding energy terms of the
models given in Table 5 are replaced by the change in
the stretching energy upon binding, ∆Estretch, and the
change in the stretching energy of the receptor upon
ligand binding, ∆Estretch(RR).

GFA-MLR optimization of the FEFF 3D-QSAR mod-
els was determined by developing three-, four-, and five-
descriptor families of models (Table 9). This type of
multiple model representation helps to identify the
origin and significance of each term in the manifold of
FEFF 3D-QSAR models. It is possible that the five-term
models may constitute an overfit case, but these models
should be considered within the context of the manifold
set of models in Table 9. The three-descriptor models
are predominantly comprised of the dispersion energy
terms and the intramolecular vacuum energy of the
unbound ligand. The solvation energy term is added to
the four-descriptor models, and this increases the r2

value from 0.77 to 0.88. The five-descriptor models do
not provide a better “explanation” (significantly in-
creased data fits) as compared to the four-descriptor
models and are found to be comprised of the same terms
found in the three- and four-descriptor models.

Compound 18, the â-cyanomethyl analogue, contains
a rigid side chain, and compound 19 is the only
compound in the analogue series, other than glucose,
to have an R-hydroxy substituent. These singular prop-
erties may be the sources of why these two analogues
are outliers. The N atom of the cyano group of compound
18 and the O of the R-hydroxy group of compound 19

Table 5. Top Five FEFF 3D-QSAR Models for the Prediction of ∆G for the Complete Training Set Listed in Table 2

3D-QSAR r2 a xv - r2 b Fc LOFd

∆G ) -0.10EL(LL) - 0.16ELR,vdW + 0.07ELR,stretch(LL) - 0.80ELR,vdW(LL) - 0.31 0.72 0.58 11.3 1.10
∆G ) -0.10EL(LL) - 0.17ELR,vdW + 0.06∆EL,stretch(LL) - 0.79ELR,vdW(LL) - 0.02 0.71 0.57 10.9 1.13
∆G ) -0.13EL(LL) - 0.26ELR,vdW + 0.08ELR,stretch(LL) - 0.74∆EL,vdW(LL) - 0.83 0.71 0.53 10.9 1.13
∆G ) -0.10EL(LL) - 0.19ELR,vdW + 0.08ELR,electrostatic(LL) - 0.74ELR,vdW(LL) - 0.61 0.70 0.55 10.7 1.14
∆G ) -0.10EL(LL) - 0.19ELR,vdW + 0.02EL,hb(LL) - 0.74ELR,vdW(LL) - 0.68 0.70 0.53 10.6 1.16
a Correlation coefficient. b Cross-validated r2 (leave-one-out method).29 c F-statistic. d LOF is the lack-of-fit measure.22,23

Table 6. Definitions of the Significant FEFF Terms Found in
the Top FEFF 3D-QSAR Models

EL(LL) the intramolecular energy of the unbound ligand
ELR,vdW the van der Waals intermolecular

ligand-receptor energy
∆EL,vdW(LL) the change in the van der Waals energy of the

ligand upon binding
ELR,vdW(LL) the intramolecular van der Waals energy of the

bound ligand
EL,vdW(LL) the intramolecular van der Waals energy of the

unbound ligand
EL,stretch(LL) the stretching energy of the unbound ligand
ELR,stretch(LL) the stretching energy of the bound ligand
∆EL,stretch(LL) the change in the stretching energy of the ligand

on binding
∆ER,stretch(RR) the change in the stretching energy of the

receptor on binding
∆ER,bend(RR) the change in the bending energy of the receptor

on binding
∆Estretch the change in the stretching energy on binding
ELR,electro(LL) the intramolecular electrostatic energy

of the bound ligand
EL,hb(LL) the intramolecular hydrogen-bonding energy

of the unbound ligand
ELR,el the electrostatic intermolecular ligand-receptor

energy
∆Ehb change in hydrogen-bonding energy of the whole

system upon binding
∆Eelectrostatic change in electrostatic energy of the whole

system upon binding
EL(LM) the solvation energy of the unbound ligand
∆EL(LM) change in solvation energy of the ligand

upon binding
∆Esolv change in solvation energy of the whole system

upon binding
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were also found to form hydrogen bonds to the active
site residues through a water molecule (water bridges)
(ref). The only source of hydrogen bonding for these
substituent groups to the active site residues seem to
be through such water bridges.14 Water-bridge ligand-
receptor hydrogen bonding also occurs for compounds
10 and 15 which are found to have relatively large
(within the outlier definition) residual values. Ligand-
receptor hydrogen bonding via water molecule bridges
is not explicitly considered in our FEFF MDSs. There-
fore, poor modeling of water-bridge ligand-receptor
interactions may be another source for generating
outliers.

Discussion
The ligand-receptor modeling approximations em-

ployed in this FEFF 3D-QSAR study are listed in Table
10. This table also describes how each approximation
influences the calculations, and suggestions are given
as to how to minimize the adverse impacts of the
approximations on the development of FEFF 3D-QSAR
models.

Explicit water molecules have not been considered in
the MDSs. Rather, a hydration shell model to estimate
solvation energetics has been included in the force field.
The hydration shell model, when applied over the course
of a MDS, can produce major distortions in molecular
geometry. This behavior arises because the force derived
from the hydration shell potential function is unrealisti-
cally large and operates over the entire length of the
MDS time step. To minimize this flaw in the represen-
tation of the force field solvation term, the FEFF
solvation energies are only computed for selective, and
representative, low-energy geometries along a MDS
trajectory.

The absence of explicit water molecules during the
MDS eliminates the possibility of forming specific types
of solute-solvent structures, such as a water bridge
between the bound ligand and the enzyme as is observed
in the crystal complexes for some analogues in this data
set. On the other hand, assignment of explicit waters
in an MDS requires very long MDSs in order to

Table 7. Linear Cross-Correlation Matrix of the Descriptors in the Top FEFF 3D-QSAR Modelsa

energy
termsb 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1.00
2 -0.30 1.00
3 0.08 -0.31 1.00
4 0.02 -0.22 0.97 1.00
5 0.14 0.08 -0.35 -0.45 1.00
6 0.16 -0.02 0.10 0.01 0.89 1.00
7 0.06 0.03 0.18 0.19 -0.11 -0.03 1.00
8 0.13 0.72 -0.31 -0.26 0.09 -0.03 0.13 1.00
9 -0.04 -0.50 0.38 0.34 -0.16 0.00 0.68 -0.64 1.00

10 0.26 0.10 0.13 0.17 0.02 0.11 0.05 0.09 -0.03 1.00
11 -0.26 -0.10 -0.14 -0.17 -0.02 -0.11 -0.05 -0.09 0.03 -1.00 1.00
12 -0.02 -0.26 0.21 0.13 0.20 0.29 0.13 -0.15 0.21 -0.77 0.77 1.00
13 -0.06 -0.06 0.08 0.05 0.16 0.21 -0.05 -0.20 0.11 0.37 -0.37 -0.24 1.00
14 0.02 0.05 -0.14 -0.09 -0.15 -0.21 -0.02 0.19 -0.16 -0.35 0.35 0.21 -0.99 1.00
15 -0.03 -0.04 -0.06 -0.04 -0.14 -0.18 -0.01 0.07 -0.06 -0.47 0.47 0.34 -0.98 0.98 1.00
16 0.04 -0.03 0.14 0.11 0.00 0.06 -0.09 -0.17 0.06 0.45 -0.45 -0.40 0.92 -0.92 -0.94 1.00
17 -0.05 0.03 -0.16 -0.12 -0.01 -0.07 0.10 0.18 -0.05 -0.45 0.45 0.41 -0.92 0.92 0.93 -1.00 1.00
a The matrix includes descriptors that are correlated to those FEFF descriptors determined from the top five models using the GFA-

MLR scheme. b 1 ) EL(LL), 2 ) ELR,vdW, 3 ) ELR,stretch(LL), 4 ) ∆EL,stretch(LL), 5 ) ∆ER,stretch(RR), 6 ) ∆Estretch, 7 ) ELR,vdW(LL), 8 )
EL,vdW(LL), 9 ) ∆EL,vdW(LL), 10 ) EL(LM), 11 ) ∆EL(LM), 12 ) ∆Esolv, 13 ) EL,hb(LL), 14 ) ELR,electrostatic(LL), 15 ) ELR,el, 16 ) ∆Ehb, 17
) ∆Eelectrostatic.

Figure 5. A plot of the GFA-MLR optimization for predicting
∆G. Descriptor usage plotted as a function of number of
crossovers in the GFA-MLR analysis is shown here. Symbols:
], EL(LL) use; 9, ELR,vdW(LL) use; 2, ELR,vdW use; 4, EL,vdW-
(LL) use; *, ELR,stretch(LL) use; O, EL,hb(LL) use; 0, ∆EL,stretch-
(LL) use; [ ELR,electrostatic(LL) use. The FEFF terms (descriptors)
are defined in Table 6.

Table 8. Linear Correlation Matrix of the Residuals of Error
for the Top Five FEFF 3D-QSAR Models from GFA-MLR
Optimization

model 1 model 2 model 3 model 4 model 5

model 1 1.00
model 2 1.00 1.00
model 3 0.89 0.89 1.00
model 4 0.91 0.89 0.85 1.00
model 5 0.91 0.90 0.87 0.92 1.00

Figure 6. Plot of the observed ([) and predicted (]) (using
model 1 of Table 5) binding free energy, ∆G, versus the
compound number (Table 2). The outliers are identified in the
plot.
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adequately sample the states of the system and build
up a meaningful equilibrium profile. In essence, such
explicit water MDSs on inhibitor-enzyme systems are
not practical, and the incomplete ensemble sampling
associated with such attempted simulations very likely
yields large errors in the estimation of the solvation
energetics.

The inhibitors are relatively small, rigid, and high
analogues to one another so that changes in intramo-
lecular ligand conformational entropy in the binding
processes are small and can be neglected in the FEFF.
Likewise, changes in the receptor geometry appear to
be small from the X-ray structures of free and bound
enzymes. Thus, entropy changes due to the receptor
geometry have not been considered in the development
of the FEFF 3D-QSAR models. Only the solvation
entropy inherent to the hydration shell solvation model
is resident in the development of the QSAR models.

Van der Waal and stretching energy terms dominate
as the key descriptors (binding terms) in both the whole
training set and the “outlier-free” best FEFF 3D-QSAR
models. This finding suggests that the steric fitting of
the inhibitor into the receptor active site is the critical
feature that distinguishes binding among the inhibitors
in the training set. Moreover, the steric fitting and
corresponding van der Waals and valence geometry
energies may, in fact, govern the binding thermodynam-
ics of this system. However, this conclusion cannot be
made from the FEFF 3D-QSARs since these models only
distinguish binding behavior on a relative basis among
the inhibitors.

The regression coefficients of the van der Waal and
stretch energy terms in the best FEFF 3D-QSAR
models, see Tables 5 and 9, are all negative. This
general form of the regression equations supports a
steric fitting model for explaining enzyme-inhibitor

Table 9. Top Five Three-, Four-, and Five-Descriptor FEFF 3D-QSAR Models for Prediction of ∆G after Deletion of Outliers

3D-QSARs r2 a xv - r2 b Fc LOFd

Three-Descriptor Models
∆G ) -0.10EL(LL) - 0.16ELR,vdW - 0.85ELR,vdW (LL) + 0.45 0.77 0.66 20.45 1.20
∆G ) -0.70EL,vdW(LL) - 0.06∆ER,stretch(RR) - 1.02ELR,vdW(LL) + 0.82 0.75 0.63 20.21 1.30
∆G ) -0.85EL,vdW(LL) - 0.04∆ER,bend(RR) - 1.15ELR,vdW(LL) + 0.76 0.73 0.60 20.20 1.35
∆G ) -0.10ELR,vdW - 0.06∆ER,stretch(RR) - 1.06ELR,vdW(LL) - 0.52 0.72 0.60 19.63 1.40
∆G ) -0.14EL(LL) - 0.26ELR,vdW - 0.69∆EL,vdW (LL) + 0.01 0.71 0.51 20.89 1.40

Four-Descriptor Models
∆G ) -0.09EL(LL) - 0.14ELR,vdW - 0.05∆ER,stretch(RR) - 0.99ELR,vdW(LL) + 0.08 0.88 0.80 11.12 0.90
∆G ) -0.10EL(LL) - 0.15ELR,vdW - 0.04∆Estretch - 0.91ELR,vdW(LL) + 0.04 0.83 0.73 12.22 1.10
∆G ) -0.42EL(LM) - 0.65EL,vdW(LL) - 0.06∆ER,stretch(RR) - 1.01ELR,vdW(LL) - 1.51 0.83 0.73 10.21 1.21
∆G ) 0.40∆EL(LM) - 0.65EL,vdW(LL) - 0.06∆ER,stretch(RR) - 1.01ELR,vdW(LL) - 1.41 0.82 0.72 10.10 1.29
∆G ) 0.29∆Esolv - 0.61EL,vdW(LL) - 0.07∆ER,stretch(RR) - 1.10ELR,vdW(LL) - 1.36 0.82 0.72 9.95 1.31

Five-Descriptor Models
∆G ) -0.08EL(LL) - 0.12ELR,vdW - 0.06∆ER,stretch(RR) - 1.05ELR,vdW(LL) + 0.19∆Esolv - 1.11 0.90 0.80 13.56 0.76
∆G ) -0.09EL(LL) - 0.12ELR,vdW - 0.06∆ER,stretch(RR) - 0.99ELR,vdW(LL) + 0.19EL,stretch(LL) - 1.05 0.90 0.81 14.56 0.77
∆G ) -0.08EL(LL) - 0.13ELR,vdW - 0.05∆ER,stretch(RR) - 0.99ELR,vdW(LL) + 0.22EL(LM) - 1.13 0.89 0.79 13.25 0.79
∆G ) -0.09EL(LL) - 0.13ELR,vdW - 0.04∆ER,stretch(RR) - 1.03ELR,vdW(LL) + 0.19ELR,stretch(LL) - 0.001 0.89 0.81 13.10 0.80
∆G ) -0.08EL(LL) - 0.13ELR,vdW - 0.08∆ER,stretch(RR) - 1.01ELR,vdW(LL) + 0.03∆Estretch + 0.21 0.88 0.80 12.22 0.85

a Correlation coefficient. b Cross-validated r2 (leave-one-out method (ref)). c F-statistic. d LOF is the lack-of-fit measure (ref).

Table 10. Molecular Modeling Approximations, Their Impact on Modeling, and the Approaches Used in This Study To Minimize
Approximation Impact

approximations impact on modeling approaches to minimize impact

1. FEFF representation
a. solvation energies

estimated using a
hydration shell model

incorrect balance between solvation energy
and the rest of the FEFF during MDSs

consider only the solvation energies for
low-energy states, or the conformer
state used to construct the QSAR

b. explicit water
molecules are not included

hydrogen bonding of ligand through water
molecules (water bridges) to active site residues

examine outliers within context of
missing explicit water interactions

c. entropic contributions
are considered to be constant
for the inhibitor analogue series

neglect of conformational flexibility on binding entropy contributions can be estimated,
if necessary, by a group additive model
and scaled with respect to temperature
in the FEFF 3D-QSAR fitting procedure

2. the LR, L, and R are
modeled as being neutral

multiple protonation states are possible and
could influence electrostatic energetics

the protonation state held constant for the
entire training set, so error should be
“constant” over the training set; a neutral
state approximates solvation and
counterion effects on FEFF interactions

3. scaled down receptor model the scaled down receptor geometry can
deviate from the crystal geometries over
a long MDS and some RR and LR
interactions are eliminated

heavy masses assigned to
each of the atoms of the scaled down
model to model missing momentum
reservoir of the rest of the enzyme

4. MDS temperature balance the enthalpy and entropic
contributions to ∆G

the preferred MDS
temperature corresponds to the best
FEFF 3D-QSAR model of a subset of
the training set

5. sampling schemes used
to explore the geometry-energy
states of the LR, R, and L

the sampling schemes may be incomplete
with respect to sampling bound and
unbound ligand conformations and to
monitoring the change in geometry of the
receptor for the bound and unbound states

use experimental data for bound
ligand alignment and ligand-receptor
geometry for defining the bound and
unbound ligand reference states
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binding. ELR,vdW, ELR,vdW(LL), and EL(LL) are increas-
ingly negative as each of these interactions becomes
increasingly stabilizing. Thus, the better (more stabiliz-
ing) each of these interactions, the more positive (better
binding) is their respective contributions to ∆G. Con-
versely, ∆ER,stretch, ∆Estretch, and ELR,stretch are increas-
ingly positive as the valence bond geometry is increas-
ingly distorted which, in turn, produces a decrease in
∆G. The less the distortions in valence bond geometry
of the ligand and receptor, the better the binding.

Electrostatics, hydrogen bonding, and solvation en-
ergetics show up in some of the four-descriptor FEFF
3D-QSAR models in Tables 5 and 9. Nevertheless, these
interaction energy terms are minor descriptors relative
to the van der Waal and bond stretching energy. It
would seem that the hydrogen bond water bridges
between the enzyme and some inhibitors, as observed
by X-ray, are the only significant nonsteric binding
interaction.

The GFA-MLR analysis provides a family of QSAR
models for understanding the contributions of the FEFF
to account for the explanation in the variance in the
binding affinities of the glucose inhibitor analogue
series. The dispersion energy terms, including the
intramolecular vacuum energy of the unbound ligand,
the intermolecular van der Waals interaction energy,
and the van der Waals energy of the bound ligand
account for 77% (r2 ) 0.77) of the variance in the
biological activity over the training set. The inclusion
of the FEFF solvation terms, as seen in Table 9, provide
for additional explanation of the variance in inhibitory
activity. Thus, for the training set of glucose analogue
inhibitors of GPb, the solvation and dispersion energet-
ics provide a basis for the understanding of the variance
in the binding affinities.

Reality is stretched with the finding that the absolute
total energy of the ligand in the unbound state, EL(LL),
is a major descriptor term in the FEFF 3D-QSAR
models. The explanation of this finding is uncovered by
monitoring the behavior of the three related descriptors,
EL(LL), the total absolute bound ligand energy, ELR(LL),
and their difference, ∆ELR(LL). During the GFA-MLR
optimization all three descriptors survive for a while,
but ∆ELR(LL) is the first to be lost of the three in the
latter phases of model optimization. A difference term
of the form aELR(LL) - bEL(LL) survives in the models
until very near the end of the optimization process when
ELR(LL) is finally lost. Thus, EL(LL) is “statistically”
representing the difference in the total bound and
unbound ligand energies which does make physical
sense in a ligand-receptor binding process. We stress
that an investigator not pursue increasing inhibitory
binding of new ligands by designing the ligands to be
of low absolute intramolecular energy, EL(LL), through,
for example, intramolecular ligand hydrogen bonding.
Rather, the investigator should pursue enhancing in-
hibitory potency of new ligands by minimizing the
difference between bound and unbound ligand confor-
mational energy.

An FEFF 3D-QSAR is not a QSAR in the “classic”
sense. It is a force field that can be used to predict
ligand-receptor binding thermodynamics. The predic-
tive use of this force field is in doing virtual screening
of new hypothetical ligands. This application of the

FEFF 3D-QSAR models will be one of the topics of a
paper which is in preparation. However, investigators
will, and probably should, inspect an FEFF 3D-QSAR
for conceptual insight into the feature/descriptor
requirements for activity. Still, investigators should not
be surprised, nor disappointed, if the descriptors do not
readily admit to a level of interpretation that allows
specific compounds to be identified for synthesis. The
dispersion energy term in the FEFF 3D-QSAR models
derived in this work is an example of a descriptor that
cannot be readily interpreted in terms of specific
candidate compounds to synthesize but, nevertheless,
is a well-defined property of a molecule and molecular
systems.

The FEFF 3D-QSAR models developed in this study,
when taken in comparison to FEFF binding models
developed for other inhibitor-enzyme systems, suggest
the FEFF methodology has discriminating capabilities
to dissect the binding thermodynamic behavior of
ligand-receptor systems. In the renin-peptidomimetic
inhibitor study of Tokarski and Hopfinger,5 the intrinsic
stability of the ligand, EL(LL), and ELR,vdW are found to
be major descriptors in the ∆G FEFF 3D-QSAR models.
However, the change in solvation free energy upon
binding as well as the changes in the binding entropies
of both the ligand and the receptor are also significant
descriptors in the best FEFF 3D-QSAR models.

In an unpublished FEFF 3D-QSAR analysis of a set
of acetylcholinesterase analogue inhibitors to Aricept
[E2020]27 (used for treatment of Alzheimer’s disease),
the major FEFF descriptors were found to be the
ligand-receptor hydrogen-bonding energy and the ligand
solvation binding energy. Overall, as observed from
experimental studies on the binding thermodynamics
of ligand-receptor systems,28 different types of binding
interactions are predicted by FEFF 3D-QSAR analysis
to play dominant roles in different ligand-receptor
systems.
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